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ABSTRACT
In this paper, a novel genetic clustering algorithm based on
dynamic niching (DNGA) for image segmentation is pro-
posed. It is an effective and robust approach to image seg-
mentation on the basis of a total similarity function relating
to the approximate density shape estimation. In the new al-
gorithm, a dynamic identification of the niches is performed
at each generation to automatically evolve the proper num-
ber of clusters and appropriate cluster centers of the data
set. Moreover, a local search method is embeded in the evo-
lutionary process which makes the dynamic niching method
insensitive to the radius of the niche. Compared to exist-
ing methods, DNGA algorithm does not need to pre-specify
the number of segmentation. Several images are used to
demonstrate its superiority. The experimental results show
that DNGA algorithm has high performance, effectiveness
and flexibility.

Categories and Subject Descriptors: I.4.6 Segmenta-
tion: pixel classification

General Terms: Algorithms.

Keywords: genetic algorithm, clustering, niche, image seg-
mentation.

1. INTRODUCTION
Image segmentation is a first and key step for image analy-

sis and pattern recognition [1]. It is is a process of partition-
ing an image into different regions that are homogeneous or
“similar” in some image characteristics. These regions may
roughly correspond to objects, parts of objects, or groups
of objects in the scene represented by that image. It can
also be viewed as the process of identifying edges that cor-
respond to boundaries between objects, and regions that
correspond to surfaces of objects in the image. This task is
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often the preliminary step in many video and computer vi-
sion applications, such as object localization or recognition,
data compression, tracking, image retrieval, or understand-
ing. In recent years, many segmentation algorithms have
been proposed in the literature [2, 3]. Generally, they may
be broadly divided into three categories: edge-based [4, 5],
region-based [6, 7], and clustering-based [8, 9].

In computer vision and pattern recognition, clustering al-
gorithm has been used extensively to image segmentation
due to its clustering validity and simplicity of implemen-
tation. It is a pixels clustering process of dividing pixels
into clusters so that pixels in the same cluster are as similar
as possible and those in different clusters are as dissimi-
lar as possible. This accords with segmentation application
sice different regions should be visually as different as pos-
sible. However, the implementations of the traditional clus-
tering algorithms often encounter two unavoidable initializa-
tion difficulties of deciding the cluster number and obtaining
the initial cluster centers that are properly distributed. In
order to overcome these problems, stochastic clustering algo-
rithms based on simple Genetic Algorithm (GA) [10, 11] or
its variants have been proposed [12, 13, 14]. In fact, all these
algorithms consider the clustering problem as an unimodal
problem. Each chromosome is described by a sequence of the
cluster centers. When all the cluster centers are contained
in the chromosome, then the validity function reaches its
global optimum. However, a simpler way is to consider the
clustering problem as a multimodal problem and each clus-
ter center corresponds to a local optimum of the validity
function. In this circumstance, each chromosome represents
a cluster center and all the local optima of the validity func-
tion should be found. Algorithms allow for the formation
and the maintenance of different solutions and thus prevent
the GA from being trapped in local optima, which can be
considered to solve this problem.

In order to preserve the population diversity which pre-
vents GAs being trapped by a single local optimum, several
methods have been developed. In Ref. [15], the fitness shar-
ing (FS) is introduced. The fitness of an individual is re-
duced if there are many other individuals near it, therefore
the GA is forced to maintain diversity in the population.
This method requires to define a similarity metric on the
search space and an appropriate niche radius, where the ra-
dius represents the maximal distance among individuals to
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be considered similar. It has been proved that when the
number of individuals within the population is large enough
and the niche radius is properly set, FS provides as many
species in the population as the number of peaks in the fit-
ness landscape [16]. In most circumstances, it is difficult
to give an effective value for the niche radius without any
a priori knowledge. In Ref. [17], the implicit fitness shar-
ing is proposed. In this algorithm, sharing is accomplished
by inducing competition for limited and explicit resources.
The difficulty of appropriately choosing the niche radius is
avoided. But, there are some other parameters needed to
be set, such as the size of the sample of individuals to com-
pete, the number of competition cycles and the definition of
a matching procedure. In order to overcome the drawbacks
of the FS methods, Deb and Goldberg proposed a criterion
for estimating the niche radius in Ref. [18]. But the heights
of the peaks and their distances should be known a priori. In
Ref. [19, 20], two dynamic fitness sharing algorithms have
been proposed. Only the individuals belonging to the same
niche share the resources of the niche. The performance
of these algorithms is also dependent on the niche radius.
Species conserving genetic algorithm (SCGA) has been pro-
posed in Ref. [21] which does not consider any sharing mech-
anism. Once a new species is discovered, its fittest individual
is retained in the next generations until a fitter individual
for that species is generated. Therefore, each species popu-
lating a region of the fitness landscape survives during the
entire evolution, whether or not it corresponds to an actual
niche. Moreover, this algorithm does not find all the niches
perfectly when the peaks have different shapes.
Motivated by these observations, a novel clustering algo-

rithm based on dynamic niching (DNGA) for image seg-
mentation is presented in this paper. Within the DNGA
algorithm, a dynamic niching with local search is developed
to preserve the diversity of the population. A simpler rep-
resentation is adopted, whereby each individual represents
a single cluster center. All the niches presented in the pop-
ulation at each generation are automatically and explicitly
identified. Then, the application of FS is limited to indi-
viduals belonging to the same niche. In order to overcome
the dependence on the niche radius, a local search method
is considered. This makes the algorithm work properly and
independently of the niche radius even if the clusters are not
equally spaced and have different volumes.
The rest of this paper is organized as follows. Section 2

provides the objective function of the segmentation prob-
lem used in the algorithm. The dynamic niching method is
presented in Section 3. Section 4 describes the evolution-
ary clustering algorithm. Experimental results are given in
Section 5. Experimental results demonstrate the efficiency
of the DNGA clustering algorithm. Finally, conclusions are
drawn in Section 6.

2. THE OBJECTIVE FUNCTION
Let X = { x1, x2, · · · , xn } be a finite subset of a

N -dimensional vector space, K be the number of clusters
and S(xj , ci) be the similarity measure between xj and the
i-th cluster center ci. Our clustering goal is to find ci to
maximize the total similarity measure Js(c) with

Js(c) =

K∑
i=1

n∑
j=1

(
exp

(
−∥xj − ci∥2

β

))γ

(1)

where c = (c1, c2, · · · , cK) and β can be defined by

β =

∑n
j=1 ∥xj − x̄∥2

n
, where x̄ =

∑n
j=1 xj

n
. (2)

According to the analysis of γ in ref. [22], we know that γ
can determine the location of peaks in the objective function
Js(c). And the value of β is no longer sensitive to the peak.

Let J̃s(xk) be the total similarity of the data point xk to all
data points with

J̃s(xk) =
n∑

j=1

(
exp−∥xj−xk∥2

β

)γ

, k = 1, 2, · · · , n. (3)

This function can be seen closely related to the density shape
of the data points in the neighborhood of xk. A large value
for J̃s(xk) means that the data point xk is close to some
cluster centers and has many data points around it. A good
estimation of γ can give a good estimation of the peak of
J̃s(xk). Here, we use the data set shown in Fig. 1 (a)
to see the influence of γ on Equation(3) and more detailed
explanation can be found in Ref. [22]. Note that the “•” in
Fig. 1 means the value of J̃s(xk) with respect to the data
point xk, k = 1, 2, · · · , n. According to Fig. 1 (b), only two
peaks will be found when γ = 1 and all the five peaks will
be separated when γ increases to 5 and 10 as shown in Fig.
1 (c) and Fig. 1 (d).
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Figure 1: (a) Five-clusters data set.(b), (c) and (d)
are plots of (3) (the approximate density shapes)
with γ = 1, γ = 5 and γ = 10, respectively.

Here, the CCA algorithm [22] is used to estimate γ. For
convenience, it is presented in the following:

1. Set m = 1 and ε1 = 0.97.

2. Calculate the correlation of the value of J̃s(xk)γm and

J̃s(xk)γ(m+1)
.

3. If the correlation is greater than or equal to the spec-
ified ε1, then choose γm to be the estimate of γ, else
m = m+ 1 and goto step 2.
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After getting the estimation of γ, the function J̃s(xk)
becomes a multimodal function, and the number of peaks
is equal to the number of clusters. Therefore, the cluster-
ing problem can be transformed into a multimodal problem
through this objective function. In the following, our new
algorithm will be used to estimate all the local optima of
J̃s(xk). The number of the local optima is the same as
the number of clusters, and the local optima are the cluster
centers. Moreover, the objective function J̃s is used as the
fitness function in the evolutionary clustering algorithm.

3. THE DYNAMIC NICHING METHOD
In the evolutionary systems, a population of individuals

evolve according to the transition operators, i.e., selection,
crossover and mutation. At each generation, the individuals
are selected according to their fitness and create offspring.
At the end of the evolution process of the simple GA, the
population consists of a single fittest individual, representing
the best solution found by the algorithm. There are many
cases, however, when the desired solution is not necessarily
the best one, but rather a collection of best. In order to
deal with this class of problem, niching has been suggested
as a viable mean to simultaneously evolve subpopulations
exploiting different niches by some kind of sharing.
In order to ensure that subpopulations are steadily formed

and maintained, only the individuals belonging to the same
niche should share the resources of the niche. But for the FS
method, each individual in the population shares its fitness
with all the individuals located at a distance smaller than
the niche radius, no matter for the actual peak, i.e., for the
niche, to which they belong. As a consequence, individuals
belonging to different peaks may share their fitness, and this
makes the perfect discrimination hypothesis is not satisfied.
Therefore, it is not guaranteed that FS would provide as
many subpopulations as the number of peaks. Moreover the
number of peaks identified by the FS methods is dependent
on the niche radius. In order to overcome these drawbacks, a
dynamic niching method is proposed. In this method, each
individual in the population belongs to one and only one
niche.
From Ref. [19, 20, 21], we can see that the radius of

the niches plays a crucial role in the identification of the
niches and niche masters. If the radius chosen is too small,
many niches may be found in every generation. On the other
hand, a large value of the radius will make many solutions
indistinguishable. This means that too few niches will be
conserved. If the radius is so large that only one niche master
is found, the algorithm will degenerate into a simple genetic
algorithm and only find one optimum with the largest fitness
value. In this section, a local search method is embeded in
the dynamic niching algorithm which makes the algorithm
insensitive to the niche radius.
Various types of local search methods are developed to

find the optimum point in a bounded region of a continuous
or discrete landscape. Among the local search algorithms,
the gradient method is one of the widely used algorithms.
Here, it is used in the dynamic niching algorithm. Our clus-
tering objective is equivalent to the following optimization
problem

c = argmax
c

Js(c) = argmin
c

(−Js(c)) (4)

We differentiate −Js(c) with respect to c and get the gra-
dient ▽c(−Js(c))

∇c(−Js(c)) =
∂(−Js(c))

∂c

= −
n∑

j=1

2
γ

β
(xj − c)(exp(−∥xj − c∥2

β
))
(5)

Then a one-step local search based on the gradient is applied
to each individual and the individual moves along the local
gradient, which leads to the following formulation of the
steepest-descent method:

c = c− µ▽c (−Js(c))

= c+ µ
n∑

j=1

2
γ

β
(xj − c)

(
exp

(
−∥xj − c∥2

β

))γ
(6)

Here, µ is the learning factor and µ ∈ (0, 1). This one-step
local search procedure makes the individual move toward
the local optimum. Therefore, the individuals belonging to
the same peak will become closer. This enables the dynamic
niching algorithm to lessen its dependency on the radius to
some extent. The skeleton of the dynamic niching algorithm
with local search is presented in Table 1. Here, Popt denotes
the population of individuals at generation t.

Table 1: The dynamic niching algorithm

Input: Popt the population at generation t
P population size
σ the niche radius.

Phase I: The local search applied to each individual.
All individuals are updated according to Equation(6).
Compute the fitness of each chromosome.
Phase II: The niche master candidates identification.
Sort the current population according to the raw fitness
v(t) = 0 (the number of niches at generation t)
u(t) = 0 (the number of niche master candidates)
For i = 1 to P do

If the ith individual is not marked then
u(t) = u(t) + 1
N(u(t)) = 1 (number of individuals in the u(t)th
niche candidate)
For j = i+ 1 to P do

If (d(i, j) < σ) and (u(t)th individual is not
marked)

insert the jth individual into the u(t)th niche
masters candidate
N(u(t)) = N(u(t)) + 1

End If
End For
If (N(u(t)) > 1) then

v(t) = v(t) + 1
mark the ith individual as the niche master of
the v(t)th niche

End If
End If

End For

After the dynamic identification of the niche master candi-
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dates of the population Popt at generation t, the individuals
belonging to the same master candidate can be defined as a
subset Si

t ̸= ∅ in the population Popt which have a distance
from the master candidate less than the niche radius and
do not belong to other niches. If the number of the indi-
viduals in Si

t is larger than 1, then this subset is assumed
as an actual niche; otherwise, the single individual in the
subset is considered as an isolated individual and all the iso-
lated individuals form the subset S∗

t . Then, the population
Popt at the generation t is partitioned into v(t) groups, say

S1
t , S2

t , · · · , S
v(t)
t , and a number of isolated individ-

uals

Popt =

(
∪

i∈{1,2,··· ,v(t)}
Si
t

)
∪ S∗

t (7)

where S∗
t represents the set of all the isolated individuals.

The output provided by the dynamic niching algorithm is
then used to implement the fitness sharing mechanism. The
sharing fitness of each individual is calculated according to

fsh,t(i) =
ft(i)

mt(i)
(8)

Here, the shared fitness value for an individual within a
niche (identified by the dynamic niching algorithm) is its
raw fitness value divided by the niche count. Otherwise, the
individual belongs to the isolated category, and its fitness is
not modified. The niche count is calculated as

mt(i) =
∑

pj∈Si
t

sh(dij), (9)

where

sh(dij) =

{
1− (

dij
σsh

)αsh if dij < σsh

0 otherwise
(10)

and σsh is the niche radius, dij is the distance between in-
dividuals i and j, and αsh is a constant parameter which
regulates the shape of the sharing function. The value of
αsh is commonly set to 1, yielding to a triangular form for
the sharing function.
After all the niches have been found, the new popula-

tion is constructed by applying the usual genetic operators.
Since some niche masters may not survive during the evo-
lution, the species elitist strategy is implemented to enable
the niche masters to survive. Here, only the actual masters
are conserved.

4. THE DNGA CLUSTERING ALGORITHM
In this section, the DNGA algorithm is proposed, which

can be used to optimize the objective function to automat-
ically evolve the proper number of clusters and the appro-
priate segmentation of the image.

4.1 Chromosome representation and initializa-
tion

For any GA, a chromosome representation is needed to
describe each individual in the population. The represen-
tation method determines how the problem is structured in
the algorithm and the genetic operators that are used. Each
chromosome is made up of a sequence of genes from certain

alphabet. An alphabet can consist of binary digits (0 and
1), floating-point numbers, integers, symbols (i.e., A, B, C,
D), etc. In early GAs, the binary digit was used. In our
method, real-valued representation is used, e.g., a chromo-
some corresponds to a cluster center. Each chromosome is
described by a sequence of N real-valued numbers where N
is the dimension of the feature space. That is to say, the
chromosome of the algorithm is written as

c = [ c1, c2, · · · , cN ]. (11)

An initial population of size P for DNGA algorithm is
usually chosen at random. In this paper, P points are ran-
domly chosen from the data set but on the condition that
there are no identical points to initialize the P chromosome.

4.2 Fitness function
The fitness function is used to define a fitness value to each

candidate solution. Here, the fitness function of the chro-
mosome, f , is defined as the objective function introduced
in Section 2

f(c) = J̃s(c) =
n∑

j=1

(
exp−∥xj−c∥2

β

)γ

, j = 1, 2, · · · , n

(12)
where xj , j = 1, 2, · · · , n are all data points in the data set
to be clustered.

4.3 Genetic Operators
Any combination of standard selection, crossover and mu-

tation operators can be employed by our algorithm. Here
intermediate recombination and uniform neighborhood mu-
tation are used.

For two randomly chosen parents c1 and c2, the offspring
of the intermediate recombination crossover (with probabil-
ity pc) is

c = c1 + r(c1 − c2) (13)

where r is a uniformly distributed random number over [0, 1].
Each chromosome undergoes mutation with a probability

pm. Let the minimum and maximum values of the data set
along the ith dimension be cimin and cimax, respectively. If
the position to be mutated is the ith dimension of a clus-
ter center with value ci, then after uniform neighborhood
mutation the value becomes

ci = ci + rmR(cimax − cimin) (14)

where R is a uniformly distributed random number over
[−1, 1] and rm ∈ (0, 1).

4.4 Description of the algorithm
In our DNGA algorithm, each chromosome represents one

cluster center and is evaluated by using the fitness function
described in Section 4.2. The niches are identified by the dy-
namic niching algorithm at each generation and the fitness
sharing is computed in every niche. The evolutionary oper-
ators, selected on the basis of probability, can be crossover
or mutation, where the former transforms two individuals
(parents) into two offspring by combining parts from each
parent, and the latter develops on a single individual and
creates an offspring by mutating that individual. The elitist
strategy [11] is implemented by replacing the worst chromo-
some of every niche with the niche masters found at each

1080



generation. The process terminates after some number of
generations, fixed either by the user or determined dynami-
cally by the program itself, and the niche masters obtained
are taken to be the solutions.
The DNGA algorithm is described as follows:

1. Initialize a group of cluster centers with size of P .

2. Evaluate each chromosome.

3. Apply the dynamic niching algorithm and apply the
fitness sharing among the individuals belonging to the
same niche. Copy the niche masters in a separate lo-
cation.

4. If the termination condition is not reached, go to Step
5. Otherwise, select the niche masters from the popu-
lation as the final cluster centers.

5. Apply the selection operator.

6. Apply crossover operator to the selected individuals
based on the crossover probability.

7. Apply mutation operator to the selected individuals
based on the mutation probability.

8. Evaluate the newly generated candidates.

9. Apply the elitist strategy.

11. Go back to Step 3.

5. EXPERIMENTS RESULTS
In order to validate the proposed algorithm, we have per-

formed a set of experiments. In the experiment, the number
of population is set to 500 and the maximum generation 50.
The crossover and mutation probabilities used by DNGA
algorithm is pc = 0.8 and pm = 0.005.
As mentioned earlier, the performance of the DNGA algo-

rithm is insensitive to the niche radius. To prove this claim,
we conduct an experiment for a data set shown in Fig. 2, in
which we vary the value of the niche radius σ and count the
number of niches found. The performances of the DNS [19],
DFS [20], SCGA [21] and DNGA are compared through this
experiment. The result is averaged over 20 runs for each
value of σ. The results obtained by the four niching algo-
rithms are shown in Fig. 3.
From Fig. 3, we can see that the performance of the DNGA

algorithm is superior to the other three algorithms. As ex-
pected, as the niche radius is increased, the number of niches
found by DNGA remains the same to the number of clusters.
But for the other three algorithms, the number of clusters
are identified correctly only within a small range of the niche
radius.
In the following, the DNGA algorithm is used to segmen-

tation several images taken from the Berkeley segmentation
dataset [23] (shown in Fig. 4) and the segmentation result
obtained through the grouping of the pixels. For the purpose
of comparison, we have also executed two popular partition-
ing techniques Fuzzy C-means [24] and Expectation Maxi-
mization [25] on the test images with K is set as the actual
number of clusters present in the image. The manually seg-
mentations of the images are shown in Fig. 5. The clustering
results for the four images are shown in Fig. 6. Here, we do
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Figure 2: The data set used in the experiment.
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Figure 3: Variation in the average number of niches
found with niche radius for the data set shown in
Fig. 2. The population size P = 100.

not show the clustering results for all the contestant algo-
rithms in order to save space.

Since test images are too heterogenous to allow for visual
validation, some statistical tools have to be used to evaluate
the segmentation results on a quantitative basis. However,
a ground truth representation of the image is necessary to
compute the statistical scores. Fortunately, the manually
segmented images are available for the images used here. In
order to compare the algorithms more carefully, three statis-
tical measures (Overall accuracy, Kappa index and Adjusted
rand index) are employed for the quantitative evolution of
the final clustering results using the notations inspired from
[26] are provided. Let n be the total number of pixels, and
nij denote the number of pixels classified into class i as pro-
duced by the algorithm which also are in cluster j in the
true cluster structure. Then ni· =

∑
j nij be the number of

pixels classified into cluster i in the image under experiment,
and n·j =

∑
i nij be the number of samples classified into

class j in the ground truth image.
(1) Overall accuracy
This is the most widely used statistical score function for
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(a) (b)

(c) (d)

Figure 4: (a) image 1, (b)image 2, (c)image 3,
(d)image 4.

the validation. The overall accuracy is the percentage of
correctly classified pixels in the image. It is given by:

po =

∑
i nii

n
(15)

(2) Kappa index
This measure is very similar to the overall accuracy, but it

introduces a chance agreement. A zero value would indicate
that the classification agrees with the reference as bad as an
arbitrary classification. The Kappa index is computed by:

Ka =
n
∑

i nii −
∑

i ni+n+i

n2 −
∑

i ni+n+i
(16)

(3) Adjusted Rand Index
The Rand Index is a clustering quality measure that mea-

sures the agreement of the clustering result with the true
cluster structure. The Adjusted Rand Index additionally
introduces a statistically induced normalization in order to
yield values close to 0 for random experiments. The Ad-
justed Rand index is defined as [27]:

ARI =

∑
ij C

nij

2 −
[∑

i C
ni+
2 ·

∑
j C

n+j

2

]
/Cn

2[∑
i C

ni+
2 +

∑
j C

n+j

2

]
/2−

[∑
i C

ni+
2 ·

∑
j C

n+j

2

]
/Cn

2

(17)
The Adjusted Rand Index return values in the interval [0, 1]
and the optimum score is 1, with higher scores being “bet-
ter”.
The three statistical measures described above are used

to measure the segmentation performance of the algorithms.
Table 2 shows the mean and standard deviation of the over-
all accuracy (in % ),the kappa index (in % ) and the adjusted
rand index, all of which are calculated over 20 runs of the
three clustering algorithms. Results show that these mea-
sures corresponding to the partitioning provided by DNGA
algorithm is the best among all the partitions. This implies
the superior performance of DNGA algorithm for automat-
ically segment the proper partitioning from the images.

(a) (b)

(c) (d)

Figure 5: (a)Manually segmented image for image 1
(2 classes), (b)Manually segmented image for image
2 (3 classes), (c)Manually segmented image for im-
age 3 (3 classes), (d)Manually segmented image for
image 4 (4 classes).

6. CONCLUSIONS
In this paper, a robust clustering algorithm based on dy-

namic niching genetic clustering algorithm (DNGA) has been
developed for image segmentation with unknown cluster num-
ber. The DNGA algorithm can find the optimal number of
segmentation and the cluster centers automatically. As the
number of segmentation is not known a priori in most practi-
cal circumstance, DNGA algorithm can be used more widely.
In the DNGA algorithm, each chromosome is encoded a cen-
ter of a cluster by a sequence of real-valued numbers. This
is more natural than the presentation used by other cluster-
ing algorithms based on simple GA. The dynamic niching is
accomplished without assuming any a priori knowledge on
the number of niches. The introduction of the one-step local
search makes the DNGA algorithm insensitive to the niche
radius. The superiority of the DNGA algorithm over FCM
and EM algorithm for image segmentation has been demon-
strated by the experiments on four images. Most data sets
with different cluster volumes and also with noisy points can
be successfully processed using DNGA clustering algorithm.
All the experiment results have shown that our algorithm is
effective, because it can provide all the actual cluster cen-
ters.
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Table 2: The mean and variance of the three statistical validity measures calculated on the final clustering
results produced by FCM, EM and DNGA algorithms over 20 runs.

Data set Validity measures FCM EM DNGA
image 1 Overall accuracy(%) 98.38(1.4791e-32) 98.42(3.5655e-10) 99.40(2.3651e-8)

Kappa index(%) 85.58(0) 85.62(2.2740e-8) 95.03(1.0297e-6)
Adjusted Rand Index 0.8303(9.6977e-4) 0.8411(2.7739e-8) 0.9438(1.3826e-6)

image 2 Overall accuracy(%) 62.48(7.3994e-7) 82.53(1.5771e-5) 81.86(4.4517e-6)
Kappa index(%) 41.64(4.9185e-4) 67.75(6.3220e-5) 66.79(1.4590e-5)
Adjusted Rand Index 0.3093(3.4239e-33) 0.4737(1.1739e-4) 0.4562(2.8772e-5)

image 3 Overall accuracy(%) 79.17(0.0049) 95.30(4.9817e-9) 96.45(3.3000e-6)
Kappa index(%) 59.92(0.0158) 88.36(3.4527e-8) 91.39(2.1568e-5)
Adjusted Rand Index 0.6606(6.3514e-9) 0.8147(7.3163e-8) 0.8679(4.6910e-5)

image 4 Overall accuracy(%) 53.31(0.0263) 71.90(5.2436e-4) 90.43(1.4439e-5)
Kappa index(%) 37.55(0.0537) 61.34(0.0010) 86.75(2.6649e-5)
Adjusted Rand Index 0.3794(2.8987e-10) 0.5042(1.5722e-4) 0.8078(8.3737e-5)
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Figure 6: (a)Segmentation with DNGA algorithm
for image 1(2 classes), (b)Segmentation with DNGA
algorithm for image 2 (2 classes), (c)Segmentation
with DNGA algorithm for image 3 (3 classes),
(d)Segmentation with DNGA algorithm for image
4 (4 classes).
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